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Adaptive Schcdu]ing:  A Statistical Approach

IIackground

Wc view lcaming as a pmccss of h ypcrtbcsis
selection - given some set of altcmativc hy -
potl]cscs, a performance metric, an(i a fixcci dis-
Irjbulion  of cxamp]cs,  a  lcarming  algorjthm
should SCICC[ (with high probability) a hypothc.-
sis thal is (CIOSC to) lhc best in tcms of its pcl-
formancc over the cxamp]c  clistribution.  Ca-
nonical cxamp]cs  arc sc]ccting  the concept
d e s c r i p t i o n  wi(h ]owcst cl:issification  error
over a distribution of e.xcmp]ars [9], or sclcct-
jng the planning heuristic that most impmvcs
avcIagc planning pcrfmmancc [8]. NumcmLIs
hypothesis selection tc.chniqucs  have bc.cn pKl-
posd both in the machine learning an(i statis[i-
ca] communities. 1 ,carning procccds  by csli-
maling  the merit of the altcmativc hypotheses
over randomly sclcctcd  training cxamplm.
‘1’cchniclucs  (iiffcr in how they :ittcmpt to mini-
mi~rc the number of training  cxamp]cs  nce.es-
sary to CIISLII.C ti]c quality of the sclcctc(i hy -
poti~csis.

~]111’ I’C.SC:llCh  h:lS fOCllSCCi  011  :lCt iVC ]Cal”llill~
strategic.s for rcciucing Ihc cost of sc]ccling a
hypothesis. A hypotilcsis  sc]cction algorithm
can bc (icscribcri  i II terms of i ts allocation sttwt-
c~y: tilis  is a policy  Ii)at [ictcrmincs how train-
ing observations aIc allocatcci  to lilt a]tcrmative
hypotllcscs.  II) general, tiIcIc may bc many dif-
ferent allocation str:i[cgics  that perform ccluiv-
alcml]y  in tc.ms oftilc quality ofthc sclcclcci  hy-
pothesis,  but (iiffcr in tcms of their efficiency.
Givcrl a sclcc[ion  pJd31cm,  S, an[i a set of al-
lcrcat  im strategies, A, cmc could, in thcmy, rank
ti)csc alloc:itim sluatcgic.s  by tile cxpcctc(i  cost
of sclc.ctin~  a hypothesis (wlIcrc cost is (icfincci
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in tcr]ns of IIumbcI  of observations, cost of ob-
scIvaI ions, c(c, ). An allocation strategy is m-
fionf~l  for tile pmblcm S if it has the. minimum
cxpcc(c(i  cost over ti)c set of altcmativcs A.

‘1’0 improve the efficiency of hypothesis selec-
tion, wc have s(miicci Ii]c following active
lcarming  mcfthoci:  ( 1 ) provi(ic a se.]cction  algo-
Iitilm will] a Spaccj ofpossib]c  allocation stratc-
gic.s;  (2) each time [i selection prnb]cm  IIILM bc

solvc(i, the sclcctiw~  algorithm activc]y (ictcr-
mincs (an al>j>lc)xilll:lti[~ll  to) the rationat  policy
for ti)i~t problcm,  atl(i  ailocatcs  obscrwations  ac-
cmiillg  to this rational policy. Wc have shown
that, i)y consi(icring, ccrlain  rcstrictcci “alloca-
tion s!ratcgics spaces,” the active learning can
sig,nif)cantly incrcasc  the. efficiency of hypotil-
csis sc]cction. ‘] ’hcsc rcslllts arc not Solely
thcor~tica]  - ti]c a~qmach  has been app]ic(i to
t hc pI oblcm of j (icnt i f yi ng goo[i scaIch cent rol
heuristics for a real-wor]ci schccillling problcm
tit NASA.

‘1’hc princjpal  msu]ts of our work relevant to ac-
tive lcarlling arc as follows:

1. WL have shown On both synthetic and Ical-
worl(i  (iata that ac(ivc lc.arming CaII significantly
miucc  the cost of selecting hypoli]cscs  [ 1 ,4,5].

2. Wc have cicmoIIs{Iatcci  the applicability of
hypothcsjs  sclcctim  mctho(is  to a real-worl(i
schcciulins  pI’oblcm [2,5,7] an(i osc(i  active
lcarming  techniques in this application - thus
(icmonstmting  ti]c applicability of ac~ivc lcarm-
ins to a Ic:il-woIIci  pmb]cm.



IMwancc  to Saggcstd  Symposia Topics

Our work is relevant to the suggested symposia
topics in several ways,

‘1’hcol’y: Wc have. derived thccwct ical
bounds  cm the performance improvement of ac-
(ivc lc:irning  over non-active lc:iming,  under
certain  assumptions [ 1].

Algorithms: we have developed an
:t}ll>l.oxilll:ltcly  rational active lcaming algo-
rithm for a general class of hypothesis selection
]mblcms [ 1 ,4].

llv:iluat  ion: we have dcm(mstratc.(1  0111”

techniques on both synthetic and natural data

sets [4].
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